On Augmented Lagrangian Methods with General Lower-Level Constraints

نویسندگان

  • Roberto Andreani
  • Ernesto G. Birgin
  • José Mario Martínez
  • María Laura Schuverdt
چکیده

Augmented Lagrangian methods with general lower-level constraints are considered in the present research. These methods are useful when efficient algorithms exist for solving subproblems in which the constraints are only of the lower-level type. Inexact resolution of the lower-level constrained subproblems is considered. Global convergence is proved using the Constant Positive Linear Dependence constraint qualification. Conditions for boundedness of the penalty parameters are discussed. The reliability of the approach is tested by means of a comparison against Ipopt and Lancelot B. The resolution of location problems in which many constraints of the lower-level set are nonlinear is addressed, employing the Spectral Projected Gradient method for solving the subproblems. Problems of this type with more than 3 × 106 variables and 14 × 106 constraints are solved in this way, using moderate computer time. The codes are free for download in www.ime.usp.br/∼egbirgin/tango/

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derivative-free methods for nonlinear programming with general lower-level constraints*

Augmented Lagrangian methods for derivative-free continuous optimization with constraints are introduced in this paper. The algorithms inherit the convergence results obtained by Andreani, Birgin, Martínez and Schuverdt for the case in which analytic derivatives exist and are available. In particular, feasible limit points satisfy KKT conditions under the Constant Positive Linear Dependence (CP...

متن کامل

Local Convergence Properties of

We consider the local convergence properties of the class of augmented Lagrangian methods for solving nonlinear programming problems whose global convergence properties are analyzed by Conn et al. (1993a). In these methods, linear constraints are treated separately from more general constraints. These latter constraints are combined with the objective function in an augmented Lagrangian while t...

متن کامل

Convergence Properties of an Augmented Lagrangian Algorithm for Optimization with a Combination of General Equality and Linear Constraints

We consider the global and local convergence properties of a class of augmented Lagrangian methods for solving nonlinear programming problems. In these methods, linear and more general constraints are handled in different ways. The general constraints are combined with the objective function in an augmented Lagrangian. The iteration consists of solving a sequence of subproblems; in each subprob...

متن کامل

RAL 95-009 Convergence Properties of an Augmented Lagrangian Algorithm for Optimization with a Combination of General Equality and Linear Constraints

ABSTRACT We consider the global and local convergence properties of a class of augmented Lagrangian methods for solving nonlinear programming problems. In these methods, linear and more general constraints are handled in different ways. The general constraints are combined with the objective function in an augmented Lagrangian. The iteration consists of solving a sequence of subproblems; in eac...

متن کامل

Global Convergence of Augmented Lagrangian Methods Applied to Optimization Problems with Degenerate Constraints, Including Problems with Complementarity Constraints

We consider global convergence properties of the augmented Lagrangian methods on problems with degenerate constraints, with a special emphasis on mathematical programs with complementarity constraints (MPCC). In the general case, we show convergence to stationary points of the problem under an error bound condition for the feasible set (which is weaker than constraint qualifications), assuming ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2007